1. Packages
  2. Databricks Provider
  3. API Docs
  4. getDataQualityMonitor
Databricks v1.77.0 published on Tuesday, Nov 4, 2025 by Pulumi

databricks.getDataQualityMonitor

Start a Neo task
Explain and create a databricks.getDataQualityMonitor resource
databricks logo
Databricks v1.77.0 published on Tuesday, Nov 4, 2025 by Pulumi

    Public Beta

    This data source can be used to fetch a data quality monitor.

    For the table object_type, the caller must either:

    1. be an owner of the table’s parent catalog
    2. have USE_CATALOG on the table’s parent catalog and be an owner of the table’s parent schema.
    3. have the following permissions:
      • USE_CATALOG on the table’s parent catalog
      • USE_SCHEMA on the table’s parent schema
      • SELECT privilege on the table.

    Note This data source can only be used with a workspace-level provider!

    Example Usage

    Getting a data quality monitor by Unity Catalog object type (currently supports schema and table) and object id:

    import * as pulumi from "@pulumi/pulumi";
    import * as databricks from "@pulumi/databricks";
    
    const _this = databricks.getSchema({
        name: "my_catalog.my_schema",
    });
    const thisGetDataQualityMonitor = _this.then(_this => databricks.getDataQualityMonitor({
        objectType: "schema",
        objectId: _this.schemaInfo?.schemaId,
    }));
    
    import pulumi
    import pulumi_databricks as databricks
    
    this = databricks.get_schema(name="my_catalog.my_schema")
    this_get_data_quality_monitor = databricks.get_data_quality_monitor(object_type="schema",
        object_id=this.schema_info.schema_id)
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		this, err := databricks.LookupSchema(ctx, &databricks.LookupSchemaArgs{
    			Name: "my_catalog.my_schema",
    		}, nil)
    		if err != nil {
    			return err
    		}
    		_, err = databricks.LookupDataQualityMonitor(ctx, &databricks.LookupDataQualityMonitorArgs{
    			ObjectType: "schema",
    			ObjectId:   this.SchemaInfo.SchemaId,
    		}, nil)
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Databricks = Pulumi.Databricks;
    
    return await Deployment.RunAsync(() => 
    {
        var @this = Databricks.GetSchema.Invoke(new()
        {
            Name = "my_catalog.my_schema",
        });
    
        var thisGetDataQualityMonitor = Databricks.GetDataQualityMonitor.Invoke(new()
        {
            ObjectType = "schema",
            ObjectId = @this.Apply(getSchemaResult => getSchemaResult.SchemaInfo?.SchemaId),
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.databricks.DatabricksFunctions;
    import com.pulumi.databricks.inputs.GetSchemaArgs;
    import com.pulumi.databricks.inputs.GetDataQualityMonitorArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            final var this = DatabricksFunctions.getSchema(GetSchemaArgs.builder()
                .name("my_catalog.my_schema")
                .build());
    
            final var thisGetDataQualityMonitor = DatabricksFunctions.getDataQualityMonitor(GetDataQualityMonitorArgs.builder()
                .objectType("schema")
                .objectId(this_.schemaInfo().schemaId())
                .build());
    
        }
    }
    
    variables:
      this:
        fn::invoke:
          function: databricks:getSchema
          arguments:
            name: my_catalog.my_schema
      thisGetDataQualityMonitor:
        fn::invoke:
          function: databricks:getDataQualityMonitor
          arguments:
            objectType: schema
            objectId: ${this.schemaInfo.schemaId}
    

    Using getDataQualityMonitor

    Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.

    function getDataQualityMonitor(args: GetDataQualityMonitorArgs, opts?: InvokeOptions): Promise<GetDataQualityMonitorResult>
    function getDataQualityMonitorOutput(args: GetDataQualityMonitorOutputArgs, opts?: InvokeOptions): Output<GetDataQualityMonitorResult>
    def get_data_quality_monitor(object_id: Optional[str] = None,
                                 object_type: Optional[str] = None,
                                 opts: Optional[InvokeOptions] = None) -> GetDataQualityMonitorResult
    def get_data_quality_monitor_output(object_id: Optional[pulumi.Input[str]] = None,
                                 object_type: Optional[pulumi.Input[str]] = None,
                                 opts: Optional[InvokeOptions] = None) -> Output[GetDataQualityMonitorResult]
    func LookupDataQualityMonitor(ctx *Context, args *LookupDataQualityMonitorArgs, opts ...InvokeOption) (*LookupDataQualityMonitorResult, error)
    func LookupDataQualityMonitorOutput(ctx *Context, args *LookupDataQualityMonitorOutputArgs, opts ...InvokeOption) LookupDataQualityMonitorResultOutput

    > Note: This function is named LookupDataQualityMonitor in the Go SDK.

    public static class GetDataQualityMonitor 
    {
        public static Task<GetDataQualityMonitorResult> InvokeAsync(GetDataQualityMonitorArgs args, InvokeOptions? opts = null)
        public static Output<GetDataQualityMonitorResult> Invoke(GetDataQualityMonitorInvokeArgs args, InvokeOptions? opts = null)
    }
    public static CompletableFuture<GetDataQualityMonitorResult> getDataQualityMonitor(GetDataQualityMonitorArgs args, InvokeOptions options)
    public static Output<GetDataQualityMonitorResult> getDataQualityMonitor(GetDataQualityMonitorArgs args, InvokeOptions options)
    
    fn::invoke:
      function: databricks:index/getDataQualityMonitor:getDataQualityMonitor
      arguments:
        # arguments dictionary

    The following arguments are supported:

    ObjectId string

    The UUID of the request object. It is schema_id for schema, and table_id for table.

    Find the schema_id from either:

    1. The [schema_id](https://docs.databricks.com/api/workspace/schemas/get#schema_id) of the Schemas resource.
    2. In Catalog Explorer > select the schema > go to the Details tab > the Schema ID field.

    Find the table_id from either:

    1. The [table_id](https://docs.databricks.com/api/workspace/tables/get#table_id) of the Tables resource.
    2. In Catalog Explorer > select the table > go to the Details tab > the Table ID field
    ObjectType string
    The type of the monitored object. Can be one of the following: schema or table
    ObjectId string

    The UUID of the request object. It is schema_id for schema, and table_id for table.

    Find the schema_id from either:

    1. The [schema_id](https://docs.databricks.com/api/workspace/schemas/get#schema_id) of the Schemas resource.
    2. In Catalog Explorer > select the schema > go to the Details tab > the Schema ID field.

    Find the table_id from either:

    1. The [table_id](https://docs.databricks.com/api/workspace/tables/get#table_id) of the Tables resource.
    2. In Catalog Explorer > select the table > go to the Details tab > the Table ID field
    ObjectType string
    The type of the monitored object. Can be one of the following: schema or table
    objectId String

    The UUID of the request object. It is schema_id for schema, and table_id for table.

    Find the schema_id from either:

    1. The [schema_id](https://docs.databricks.com/api/workspace/schemas/get#schema_id) of the Schemas resource.
    2. In Catalog Explorer > select the schema > go to the Details tab > the Schema ID field.

    Find the table_id from either:

    1. The [table_id](https://docs.databricks.com/api/workspace/tables/get#table_id) of the Tables resource.
    2. In Catalog Explorer > select the table > go to the Details tab > the Table ID field
    objectType String
    The type of the monitored object. Can be one of the following: schema or table
    objectId string

    The UUID of the request object. It is schema_id for schema, and table_id for table.

    Find the schema_id from either:

    1. The [schema_id](https://docs.databricks.com/api/workspace/schemas/get#schema_id) of the Schemas resource.
    2. In Catalog Explorer > select the schema > go to the Details tab > the Schema ID field.

    Find the table_id from either:

    1. The [table_id](https://docs.databricks.com/api/workspace/tables/get#table_id) of the Tables resource.
    2. In Catalog Explorer > select the table > go to the Details tab > the Table ID field
    objectType string
    The type of the monitored object. Can be one of the following: schema or table
    object_id str

    The UUID of the request object. It is schema_id for schema, and table_id for table.

    Find the schema_id from either:

    1. The [schema_id](https://docs.databricks.com/api/workspace/schemas/get#schema_id) of the Schemas resource.
    2. In Catalog Explorer > select the schema > go to the Details tab > the Schema ID field.

    Find the table_id from either:

    1. The [table_id](https://docs.databricks.com/api/workspace/tables/get#table_id) of the Tables resource.
    2. In Catalog Explorer > select the table > go to the Details tab > the Table ID field
    object_type str
    The type of the monitored object. Can be one of the following: schema or table
    objectId String

    The UUID of the request object. It is schema_id for schema, and table_id for table.

    Find the schema_id from either:

    1. The [schema_id](https://docs.databricks.com/api/workspace/schemas/get#schema_id) of the Schemas resource.
    2. In Catalog Explorer > select the schema > go to the Details tab > the Schema ID field.

    Find the table_id from either:

    1. The [table_id](https://docs.databricks.com/api/workspace/tables/get#table_id) of the Tables resource.
    2. In Catalog Explorer > select the table > go to the Details tab > the Table ID field
    objectType String
    The type of the monitored object. Can be one of the following: schema or table

    getDataQualityMonitor Result

    The following output properties are available:

    AnomalyDetectionConfig GetDataQualityMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    DataProfilingConfig GetDataQualityMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    Id string
    The provider-assigned unique ID for this managed resource.
    ObjectId string
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    ObjectType string
    (string) - The type of the monitored object. Can be one of the following: schema or table
    AnomalyDetectionConfig GetDataQualityMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    DataProfilingConfig GetDataQualityMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    Id string
    The provider-assigned unique ID for this managed resource.
    ObjectId string
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    ObjectType string
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomalyDetectionConfig GetDataQualityMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    dataProfilingConfig GetDataQualityMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    id String
    The provider-assigned unique ID for this managed resource.
    objectId String
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    objectType String
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomalyDetectionConfig GetDataQualityMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    dataProfilingConfig GetDataQualityMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    id string
    The provider-assigned unique ID for this managed resource.
    objectId string
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    objectType string
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomaly_detection_config GetDataQualityMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    data_profiling_config GetDataQualityMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    id str
    The provider-assigned unique ID for this managed resource.
    object_id str
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    object_type str
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomalyDetectionConfig Property Map
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    dataProfilingConfig Property Map
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    id String
    The provider-assigned unique ID for this managed resource.
    objectId String
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    objectType String
    (string) - The type of the monitored object. Can be one of the following: schema or table

    Supporting Types

    GetDataQualityMonitorDataProfilingConfig

    DashboardId string
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    DriftMetricsTableName string
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    EffectiveWarehouseId string
    (string) - The warehouse for dashboard creation
    LatestMonitorFailureMessage string
    (string) - The latest error message for a monitor failure
    MonitorVersion int
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    MonitoredTableName string
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    OutputSchemaId string
    (string) - ID of the schema where output tables are created
    ProfileMetricsTableName string
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    Status string
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    AssetsDir string
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    BaselineTableName string
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    CustomMetrics List<GetDataQualityMonitorDataProfilingConfigCustomMetric>
    (list of DataProfilingCustomMetric) - Custom metrics
    InferenceLog GetDataQualityMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    NotificationSettings GetDataQualityMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    Schedule GetDataQualityMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    SkipBuiltinDashboard bool
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    SlicingExprs List<string>
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    Snapshot GetDataQualityMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    TimeSeries GetDataQualityMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    WarehouseId string
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    DashboardId string
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    DriftMetricsTableName string
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    EffectiveWarehouseId string
    (string) - The warehouse for dashboard creation
    LatestMonitorFailureMessage string
    (string) - The latest error message for a monitor failure
    MonitorVersion int
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    MonitoredTableName string
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    OutputSchemaId string
    (string) - ID of the schema where output tables are created
    ProfileMetricsTableName string
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    Status string
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    AssetsDir string
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    BaselineTableName string
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    CustomMetrics []GetDataQualityMonitorDataProfilingConfigCustomMetric
    (list of DataProfilingCustomMetric) - Custom metrics
    InferenceLog GetDataQualityMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    NotificationSettings GetDataQualityMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    Schedule GetDataQualityMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    SkipBuiltinDashboard bool
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    SlicingExprs []string
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    Snapshot GetDataQualityMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    TimeSeries GetDataQualityMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    WarehouseId string
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboardId String
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    driftMetricsTableName String
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effectiveWarehouseId String
    (string) - The warehouse for dashboard creation
    latestMonitorFailureMessage String
    (string) - The latest error message for a monitor failure
    monitorVersion Integer
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitoredTableName String
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    outputSchemaId String
    (string) - ID of the schema where output tables are created
    profileMetricsTableName String
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status String
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assetsDir String
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baselineTableName String
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    customMetrics List<GetDataQualityMonitorDataProfilingConfigCustomMetric>
    (list of DataProfilingCustomMetric) - Custom metrics
    inferenceLog GetDataQualityMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notificationSettings GetDataQualityMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    schedule GetDataQualityMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    skipBuiltinDashboard Boolean
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicingExprs List<String>
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot GetDataQualityMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    timeSeries GetDataQualityMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouseId String
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboardId string
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    driftMetricsTableName string
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effectiveWarehouseId string
    (string) - The warehouse for dashboard creation
    latestMonitorFailureMessage string
    (string) - The latest error message for a monitor failure
    monitorVersion number
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitoredTableName string
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    outputSchemaId string
    (string) - ID of the schema where output tables are created
    profileMetricsTableName string
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status string
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assetsDir string
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baselineTableName string
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    customMetrics GetDataQualityMonitorDataProfilingConfigCustomMetric[]
    (list of DataProfilingCustomMetric) - Custom metrics
    inferenceLog GetDataQualityMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notificationSettings GetDataQualityMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    schedule GetDataQualityMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    skipBuiltinDashboard boolean
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicingExprs string[]
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot GetDataQualityMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    timeSeries GetDataQualityMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouseId string
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboard_id str
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    drift_metrics_table_name str
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effective_warehouse_id str
    (string) - The warehouse for dashboard creation
    latest_monitor_failure_message str
    (string) - The latest error message for a monitor failure
    monitor_version int
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitored_table_name str
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    output_schema_id str
    (string) - ID of the schema where output tables are created
    profile_metrics_table_name str
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status str
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assets_dir str
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baseline_table_name str
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    custom_metrics Sequence[GetDataQualityMonitorDataProfilingConfigCustomMetric]
    (list of DataProfilingCustomMetric) - Custom metrics
    inference_log GetDataQualityMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notification_settings GetDataQualityMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    schedule GetDataQualityMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    skip_builtin_dashboard bool
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicing_exprs Sequence[str]
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot GetDataQualityMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    time_series GetDataQualityMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouse_id str
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboardId String
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    driftMetricsTableName String
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effectiveWarehouseId String
    (string) - The warehouse for dashboard creation
    latestMonitorFailureMessage String
    (string) - The latest error message for a monitor failure
    monitorVersion Number
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitoredTableName String
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    outputSchemaId String
    (string) - ID of the schema where output tables are created
    profileMetricsTableName String
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status String
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assetsDir String
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baselineTableName String
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    customMetrics List<Property Map>
    (list of DataProfilingCustomMetric) - Custom metrics
    inferenceLog Property Map
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notificationSettings Property Map
    (NotificationSettings) - Field for specifying notification settings
    schedule Property Map
    (CronSchedule) - The cron schedule
    skipBuiltinDashboard Boolean
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicingExprs List<String>
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot Property Map
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    timeSeries Property Map
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouseId String
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used

    GetDataQualityMonitorDataProfilingConfigCustomMetric

    Definition string
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    InputColumns List<string>
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    Name string
    (string) - Name of the metric in the output tables
    OutputDataType string
    (string) - The output type of the custom metric
    Type string
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    Definition string
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    InputColumns []string
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    Name string
    (string) - Name of the metric in the output tables
    OutputDataType string
    (string) - The output type of the custom metric
    Type string
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition String
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    inputColumns List<String>
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name String
    (string) - Name of the metric in the output tables
    outputDataType String
    (string) - The output type of the custom metric
    type String
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition string
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    inputColumns string[]
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name string
    (string) - Name of the metric in the output tables
    outputDataType string
    (string) - The output type of the custom metric
    type string
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition str
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    input_columns Sequence[str]
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name str
    (string) - Name of the metric in the output tables
    output_data_type str
    (string) - The output type of the custom metric
    type str
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition String
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    inputColumns List<String>
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name String
    (string) - Name of the metric in the output tables
    outputDataType String
    (string) - The output type of the custom metric
    type String
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT

    GetDataQualityMonitorDataProfilingConfigInferenceLog

    Granularities List<string>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    ModelIdColumn string
    (string) - Column for the model identifier
    PredictionColumn string
    (string) - Column for the prediction
    ProblemType string
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    TimestampColumn string
    (string) - Column for the timestamp
    LabelColumn string
    (string) - Column for the label
    Granularities []string
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    ModelIdColumn string
    (string) - Column for the model identifier
    PredictionColumn string
    (string) - Column for the prediction
    ProblemType string
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    TimestampColumn string
    (string) - Column for the timestamp
    LabelColumn string
    (string) - Column for the label
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    modelIdColumn String
    (string) - Column for the model identifier
    predictionColumn String
    (string) - Column for the prediction
    problemType String
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestampColumn String
    (string) - Column for the timestamp
    labelColumn String
    (string) - Column for the label
    granularities string[]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    modelIdColumn string
    (string) - Column for the model identifier
    predictionColumn string
    (string) - Column for the prediction
    problemType string
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestampColumn string
    (string) - Column for the timestamp
    labelColumn string
    (string) - Column for the label
    granularities Sequence[str]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    model_id_column str
    (string) - Column for the model identifier
    prediction_column str
    (string) - Column for the prediction
    problem_type str
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestamp_column str
    (string) - Column for the timestamp
    label_column str
    (string) - Column for the label
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    modelIdColumn String
    (string) - Column for the model identifier
    predictionColumn String
    (string) - Column for the prediction
    problemType String
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestampColumn String
    (string) - Column for the timestamp
    labelColumn String
    (string) - Column for the label

    GetDataQualityMonitorDataProfilingConfigNotificationSettings

    OnFailure GetDataQualityMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    OnFailure GetDataQualityMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    onFailure GetDataQualityMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    onFailure GetDataQualityMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    on_failure GetDataQualityMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    onFailure Property Map
    (NotificationDestination) - Destinations to send notifications on failure/timeout

    GetDataQualityMonitorDataProfilingConfigNotificationSettingsOnFailure

    EmailAddresses List<string>
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    EmailAddresses []string
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    emailAddresses List<String>
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    emailAddresses string[]
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    email_addresses Sequence[str]
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    emailAddresses List<String>
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported

    GetDataQualityMonitorDataProfilingConfigSchedule

    PauseStatus string
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    QuartzCronExpression string
    (string) - The expression that determines when to run the monitor. See examples
    TimezoneId string
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    PauseStatus string
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    QuartzCronExpression string
    (string) - The expression that determines when to run the monitor. See examples
    TimezoneId string
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pauseStatus String
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartzCronExpression String
    (string) - The expression that determines when to run the monitor. See examples
    timezoneId String
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pauseStatus string
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartzCronExpression string
    (string) - The expression that determines when to run the monitor. See examples
    timezoneId string
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pause_status str
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartz_cron_expression str
    (string) - The expression that determines when to run the monitor. See examples
    timezone_id str
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pauseStatus String
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartzCronExpression String
    (string) - The expression that determines when to run the monitor. See examples
    timezoneId String
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression

    GetDataQualityMonitorDataProfilingConfigTimeSeries

    Granularities List<string>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    TimestampColumn string
    (string) - Column for the timestamp
    Granularities []string
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    TimestampColumn string
    (string) - Column for the timestamp
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestampColumn String
    (string) - Column for the timestamp
    granularities string[]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestampColumn string
    (string) - Column for the timestamp
    granularities Sequence[str]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestamp_column str
    (string) - Column for the timestamp
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestampColumn String
    (string) - Column for the timestamp

    Package Details

    Repository
    databricks pulumi/pulumi-databricks
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the databricks Terraform Provider.
    databricks logo
    Databricks v1.77.0 published on Tuesday, Nov 4, 2025 by Pulumi
      Meet Neo: Your AI Platform Teammate